Section 8.2. Stokes’ theorem

We learn:

Stokes’ theorem is a generalization of
Green’s theorem that works for curvy
surfaces, not just flat surfaces.

It needs orientation of the boundary of a
surface specially chosen relative to the
orientation of the surface.

When to use it.

We don’t need: Faraday’s law,
interpretation of curl

The book has an approach to proving
Stokes’ theorem. Read it if you want.




Let S is the part of the sphere
XN\2 + yA2 + zA2 =2 satisfying

z < 1 oriented with an outward normal vector.
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Stokes’ Theorem.
Given
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Example: Find J[_S curl F - dS where

F(x,y,2) = (-y, X, eMxyz}) and S is the part of
the sphere xA\2 + yA2 + zA2 =2 satisfying

z <1 oriented with an outward normal vector.
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Surfaces without boundary
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Stokes says: J\E S PRE L;_ds =0
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Example: find J[_S F-dS where

F(x,y,z) = (y z, z"\2, x) and S is the sphere
XA2 + yN2 +zA2 =9,
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Question: If S had been a torus instead of a

sphere in the last example, do you think the
integral would have been




Surfaces with multiple boundaries

Fxample: Find J|_S curl F- dS
where F(x,y,z) = (0, z, xz\2) and S is the

surface xA\2 +yN2 =3 +cosz, 0<z<2m
with outward normal.
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Why Stokes’ theorem works

The following is a variation of what it says in the
book from page 440 onwards. They prove it for

graphs of functions in Theorem 5, then give a

more general version in Theorem 6 and say this

is proved the same way.

Step 1: Divide the surface into pieces that are

graphs of functions. Prove the theorem on each

piece and add them together
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Step 2: Suppose S is the graph of a function
g(x,y) on a domain D with boundary oD
to which Green’s theorem applies. We will
deduce Stokes’ Theorem from Green's

Theorem.

S is z=g(x,y) and is
parametrized
Phi(x,y) = (x, y, g(x,y))

Now follow page 441
in the book
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How many of the following did we use?
a. Symmetry of the mixed partial derivatives

b. The integrals do not depend on the
parametrization (up to orientation)

c. The chain rule
d. Two of the above

e. All of the above




