Section 8.2. Stokes' theorem

We learn:

- Stokes' theorem is a generalization of Green's theorem that works for curvy surfaces, not just flat surfaces.
- It needs orientation of the boundary of a surface specially chosen relative to the orientation of the surface.
- When to use it.
- We don't need: Faraday's law, interpretation of curl
- The book has an approach to proving Stokes' theorem. Read it if you want.

Pre-class Warm-up!!!
Let S is the part of the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=2$ satisfying $z \leq 1$ oriented with an outward normal vector.
Question: which picture shows the boundary orientation of ∂S ?
a.

b.

C.

d. It isn't shown.
e. I don't remember

On Wednesday next week I will teach class: it will be examples andrenew, and if you have questions it will te a good trine to dis 1 will record it Q post the recording

Stokes' Theorem.
Given

1. a vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
2. an onented surface S and boundary OS, taken with the boundary onentation
Then $\int_{\partial S} F \cdot d \underline{s}=\iint_{S} \nabla \times F \cdot d \underline{S}$
Boundary orientation:

As we walk round ∂S standing so That the normal to S is upright δ is on the left

Recall Green's theorem:

$$
\begin{aligned}
& \int_{\partial D} P d x+Q d y \\
& \quad=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
\end{aligned}
$$

Let $F(x, y, z)=(P, Q, 0)$
Parametrize S: $\Phi(x, y)=(x, y, 0),(x, y) \in D$

$$
\nabla \times F=\left(-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)
$$

Normal vector $T_{x}=(1,0,0) \quad T_{y}=(0,1,0)$

$$
T_{x} \times T_{y}=(0,0,1)
$$

Stakes' theorem says

$$
\begin{aligned}
& \int_{\partial D} P d x+Q d y+O d z \\
& \quad=\iint_{D} \nabla x F \cdot T_{x} \times T_{y} d x d y=\iint_{D}\left(\frac{\partial Q}{D x}-\frac{\partial P}{\partial y}\right) d x d y
\end{aligned}
$$

Green's theorem is an instance of stokes' the oven.

Example: Find $\iint_{-} S$ curl F $\cdot \mathrm{dS}$ where $F(x, y, z)=\left(-y, x, e^{\wedge\{x y z\})}\right.$ and S is the part of the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=2$ satisfying $z \leq 1$ oriented with an outward normal vector.

Solution: We use

$$
\iint_{S} \nabla \times F \cdot d \underline{S}=\int_{\partial S} F \cdot d \underline{S}
$$

We parametrize ∂S which has $z=1$ so

$$
\begin{aligned}
& x^{2}+y^{2}+1^{2}=2, x^{2}+y^{2}=1 \\
& c(t)=\langle-\cos (t), \sin (t) \\
& 0 \leq t \leq 2 \pi
\end{aligned}
$$

$$
c(t)=\langle-\cos (t), \sin (t), 1) \quad \text { (check the }
$$

orientation "1
car rect by a quick calculation,

$$
c^{\prime}(t)=(\sin (t), \cos (t), 0)
$$

$$
\begin{aligned}
& \int_{\partial S} F \cdot d S=\int_{0}^{2 \pi}\left(-\sin t,-\cos t, e^{-\cos t \sin t}\right) \cdot \\
& \left.=\int_{0}^{2 \pi}-\left(\sin ^{2} t+\cos ^{2} t\right) d t(t), \cos (t), 0\right) d t
\end{aligned}
$$

Surfaces without boundary
like

Stokes says: $\iint_{S} \nabla \times F \cdot d S=\int_{\partial S} F \cdot d s=0$
Example: find $\iint_{_} S F \cdot d S$ where
$F(x, y, z)=\left(y z, z^{\wedge} 2, x\right)$ and S is the sphere $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=9$.
We show $F=\nabla \times G$ for some vector fed G by calculating the divergence

$$
\nabla \cdot F=\frac{\partial}{\partial x} y z+\frac{\partial}{\partial y} z^{2}+\frac{\partial x}{\partial z}=0
$$

This means $F=\nabla \times G$ for same G.

Stokes says: $\iint_{S} F \cdot d S=\iint_{S} \nabla_{x} G \cdot d S$

$$
=\int_{\partial s} G \cdot d \underline{s}=0
$$

became ∂S is empty.

Question: If S had been a torus instead of a sphere in the last example, do you think the integral would have been
a. >0
$\sqrt{b} .=0$
c. <0

Surfaces with multiple boundaries

Example: Find $\iint_{-} S$ curl $F \cdot d S$ where $F(x, y, z)=\left(0, z, x z^{\wedge} 2\right)$ and S is the surface $x^{\wedge} 2+y^{\wedge} 2=3+\cos z, 0 \leq z \leq 2 \pi$ with outward normal.

Solution:
Anent the boundary

when $z=0, x^{2}+y^{2}=3+1=4$, circle raduus 2 Parametrize the two boundary components
bottom: $\quad c_{b}(t)=(2 \cos (t), 2 \sin (t), 0)$
top $\quad c_{t}(t)=(-2 \cos (t), 2 \sin (t), 2 \pi)$

$$
\begin{aligned}
& \text { By Stokes: } \\
& \iint_{S} \nabla x F \cdot d S=\int_{\partial S} F \cdot d s=\int_{c_{t}} F \cdot d s t \int_{c_{b}} F \cdot d s \\
& =\int_{0}^{2 \pi}(0,2 \pi, 0) \cdot(-2 \cos (t), 2 \sin (t), 2 \pi) d t \\
& +\int_{0}^{2 \pi}(0,0,0) \cdot(2 \cos t, 2 \sin t, 0) d t \\
& =\int_{0}^{2 \pi} 4 \pi \sin t d t+\int_{0}^{2 \pi} 0 d t \\
& =0+0=0
\end{aligned}
$$

Why Stokes' theorem works

The following is a variation of what it says in the book from page 440 onwards. They prove it for graphs of functions in Theorem 5, then give a more general version in Theorem 6 and say this is proved the same way.

Step 1: Divide the surface into pieces that are graphs of functions. Prove the theorem on each piece and add them together

$$
\begin{aligned}
& \iint_{S}^{\text {Pieces called } \nabla \times F \cdot d S=\sum} \iint_{S_{i}} \nabla \times F \cdot d S \\
& \int_{S} F \cdot d \underline{s}=\sum_{\partial S_{i}} \int_{\partial S_{i}} F \cdot d \underline{s}
\end{aligned}
$$

Step 2: Suppose S is the graph of a function $\mathrm{g}(\mathrm{x}, \mathrm{y})$ on a domain D with boundary $\partial \mathrm{D}$ to which Green's theorem applies. We will deduce Stokes' Theorem from Green's Theorem.
S is $z=g(x, y)$ and is parametrized
$\operatorname{Phi}(x, y)=(x, y, g(x, y))$
Now follow page 441 in the book

Common boundaries cancel

How many of the following did we use?
a. Symmetry of the mixed partial derivatives
b. The integrals do not depend on the parametrization (up to orientation)
c. The chain rule
d. Two of the above
e. All of the above

